

243 Jubug-ri, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 449-822, Korea Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

EMC TEST REPORT

Dates of Tests: April 22 - 27, 2019 Test Report S/N: LR500121905I Test Site: LTA Co., Ltd.

Model No.

APPLICANT

DC-C4212RX

IDIS CO., LTD.

Equipment Name : Network Camera

Manufacturer : IDIS CO., LTD.

Model name : DC-C4212RX

Additional Model name : NC-C4212RX, DC-C1242RX

Test Device Serial No.: : Identification

Directive : Electromagnetic Compatibility Directive 2014/30/EU

Rule Part(s) : EN 55032:2012/AC:2013

EN 50130-4:2011/A1:2014

Data of reissue : May 03, 2019

This test report is issued under the authority of:

The test was supervised by:

Young Kyu Shin, Technical Manager

Min gi Kang, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Revision	Date of issue	Test report No.	Description
0	03.05.2019	LR500121905I	Initial

TABLE OF CONTENTS

1. General information's	4
2. Information's about test item	5
3. Test Report	7
3.1 Summary of tests	
3.2 EMISSION	8
3.2.1 Conducted emissions	8
3.2.2 Radiated Emission	
3.3 IMMUNITY	16
3.3.1 Electrostatic Discharge	
3.3.2 RF Electromagnetic Field	18
3.3.3 Electrical fast transients	19
3.3.4 Conducted disturbances, induced by radio-frequency fields	20
APPENDIX A TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	21
APPENDIX B PERFORMANCE CRITERIA	24
APPENDIX C PHOTOGRAPHS	27

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd

Address : 4, Songju-ro 236beon-gil, Yangji-myeon, Cheoin-gu, Yongin-si,

Gyeonggi-do, 17159, Korea

 Web site
 : http://www.ltalab.com

 E-mail
 : chahn@ltalab.com

 Telephone
 : +82-31-323-6008

 Facsimile
 +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2019-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2021-04-11	FCC CAB
	JAPAN	C-4948,	2020-09-10	
VCCI		T-2416,	2020-09-10	VCCI registration
VCCI		R-4483(10 m),	2020-10-15	VCCI registration
		G-10847	2022-06-13	
IC	CANADA	5799A-2	2019-06-15	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.

2. Information's about test item

2-1 Client/ Manufacturer

Company name : IDIS CO., LTD.

Address : 8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA

Telephone / Facsimile : +82-31-723-5205 / +82-31-723-5108

Factory

Company name : IDIS CO., LTD.

Address : 8-10, TECHNO 3-RO, YUSEONG-GU, DAEJEON, KOREA

2-2 Equipment Under Test (EUT)

Class : A

Equipment Name : Network Camera Model name : DC-C4212RX

Additional Model name : NC-C4212RX, DC-C1242RX

Additional Model is different only lens specification.

Serial number : Identification

Date of receipt : April 16, 2019

EUT condition : Pre-production, not damaged

Interface ports : LAN

Power rating : DC 57 V

2-3 Modification

-NONE

2-4 Test conditions

Temp. / Humid. / Pressure : +(21 - 24) °C / (36 - 41) % R.H. / (100 - 101) kPa

Tested Model : DC-C4212RX

Test mode : Capture mode

Tested Voltage : AC 230 V, 50 Hz

2-5 EUT

Equipment	Model No.	Serial No.	Manufacturer
Network Camera	DC-C4212RX	N/A	IDIS CO., LTD.

2-6 Accessary

Equipment	Model No.	Serial No.	Manufacturer
PoE Injector	SFC501G	N/A	SOLTECH
Notebook	P56	N/A	HANSUNG

2-7 Cable List

From		То		Length Shield		elding
Type	I/O Port	Туре	I/O Port	(m)	Cable	backshell
EUT	LAN	POE Injector	DATA OUT	3.5	NO	Plastic
DeE Inicates	DATA IN	Notebook	LAN	1.5	NO	Plastic
PoE Injector	AC IN	AC Power Source	3 Pin AC Line	1.2	NO	Plastic

3. Test Report

3.1 Summary of tests

Parameter	Applied Standard	Status		
I. Emission				
Radiated Emission	EN 55032:2012/AC:2013	С		
Conducted Emission	EN 55032:2012/AC:2013	С		
Harmonic Current Emission	EN 61000-3-2:2014	N/A Note3		
Voltage Fluctuations and Flicker	EN 61000-3-3:2013	NA		
II. Immunity				
Electrostatic Discharge	EN 61000-4-2:2009	С		
RF Electromagnetic field	EN 61000-4-3:2006/A1:2008/A2:2010	С		
Fast Transients Common mode	EN 61000-4-4:2012	С		
Surges, line to line and line to ground	EN 61000-4-5:2014/A1:2017	NA		
RF common mode	EN 61000-4-6:2014/AC:2015	С		
Voltage dips and Interruptions	EN 61000-4-11:2004/A1:2017	NA		
Main supply voltage variations	EN 50130-4:2011/A1:2014	NA		

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

<u>Note 3:</u> We did not test EN61000-3-2 (Harmonic current emissions) for the DC-C4212RX because equipment whose rated power is DC 57 V don't need to be tested.

3.2 EMISSION

3.2.1 Conducted emissions

Definition:

The test assesses the ability of the EUT to limit its internal noise from being present on the AC mains Power In/Output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Measurement Frequency range : 150 kHz – 30 MHz

Test method : EN 55032:2012/AC:2013

Measurement RBW : 9 kHz

Test mode : Capture mode

Result : Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

A sample calculation:

COR. F (correction factor)= LISN Insertion loss + Cable loss + Pulse Limiter Factors

Emission Level= meter reading + COR.F

Limits for conducted disturbance at the mains ports of class A ITE

Frequency Range	Quasi-peak	Average
(0.15 – 0.5) MHz	79 dBuV	66 dBuV
(0.5 – 30) MHz	73 dBuV	60 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Limits for conducted disturbance at the mains ports of class B ITE

Frequency Range Quasi-peak		Average
(0.15 - 0.5) MHz	(66 – 56) dBuV	(56 - 46) dBuV
(0.5 – 5) MHz	56 dBuV	46 dBuV
(5 – 30) MHz	60 dBuV	50 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15 MHz to 0.5 MHz

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class A equipment

Engagement Dongo	Voltage	e limits	Current limits	
Frequency Range	Quasi-peak	Average	Quasi-peak	Average
(0.15 – 0.5) MHz	(97 – 87) dBuV	(84 – 74) dBuV	(53 – 43) dBuV	(40 – 30) dBuV
(0.5 – 30) MHz	87 dBuV	74 dBuV	43 dBuV	30 dBuV

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150 / I = 44 dB$)

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class B equipment

E.,	Voltage	e limits	Curren	Current limits	
Frequency Range	Quasi-peak	Average	Quasi-peak	Average	
(0.15 – 0.5) MHz	(84 – 74) dBuV	(74 – 64) dBuV	(40 – 30) dBuV	(30 – 20) dBuV	
(0.5 – 30) MHz	74 dBuV	64 dBuV	30 dBuV	20 dBuV	

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

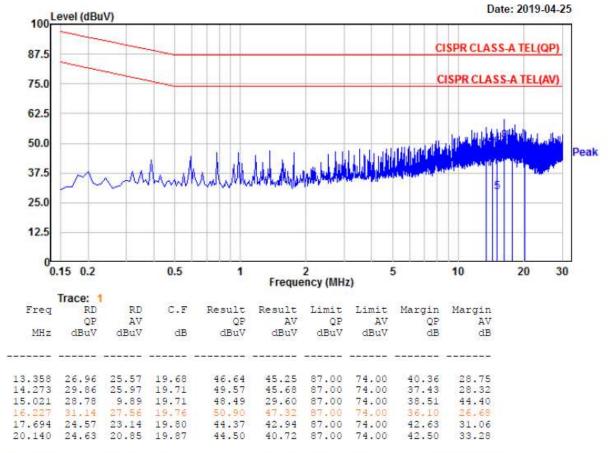
Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150/I = 44 \text{ dB}$)

Conducted emissions (TEL_100 M)

4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea

Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT /Model No.: DC-C4212RX


Test Mode : Capture mode

Temp./ Humi. : 24°C / 41% R.H.

Phase : TEL 100M

Test Power : 230 / 50

Test Engineer : KANG M G

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.2.2 Radiated Emission

Definition:

The test assesses the ability of ancillary equipment to limit their internal noise from being radiated from the enclosure. We were performed the test according to LTA procedure LTA-QI-04.

Test method : EN 55032:2012/AC:2013

Measuring Distance : 10 m for below 1 GHz / 3 m for above 1 GHz

Measurement Frequency range : 30 MHz – 6 000 MHz

Measurement RBW : 120 kHz @ 10 m / 1 MHz @ 3 m

Test mode : Capture mode

Result : Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

- The highest internal source of an EUT is higher than 108 MHz, the measurement shall be made up to 6 GHz.

(The highest internal source of an EUT: 594 MHz)

A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction

Emission Level= meter reading + COR.F

Limit of 10 m for below 1 GHz

CLASS A

Frequency Range	Quasi-peak
(30 - 230) MHz	40 dBuV/m
(230 – 1 000) MHz	47 dBuV/m
CLASS B	
Frequency Range	Quasi-peak
(30 – 230) MHz	30 dBuV/m
(230 – 1 000) MHz	37 dBuV/m

Limit of 3m for above 1 GHz

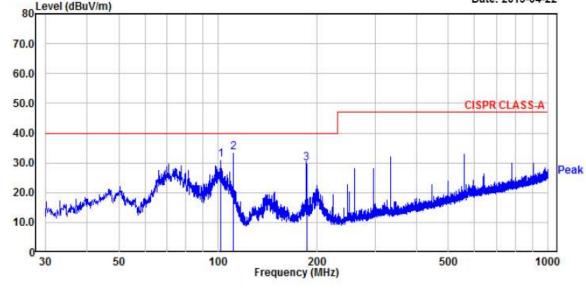
CLASS A

CLASS A		
Estaquanay Danga	Average Limit @ 3m	Peak limit @ 3m
Frequency Range	$(dB\mu V/m)$	$(dB\mu V/m)$
(1 000 – 3 000) MHz	56	76
(3 000 – 6 000) MHz	60	80
NOTE:	The lower limit applies at	the transition frequency.
CLASS B		
E	Average Limit @ 3m	Peak limit @ 3m
Frequency Range	$(dB\mu V/m)$	$(dB\mu V/m)$
(1 000 – 3 000) MHz	50	70
(3 000 – 6 000) MHz	54	74
NOTE:	The lower limit applies at	the transition frequency.

Radiated Emission (Below 1 GHz)

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea


Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: DC-C4212RX Temp/Humi: 23 / 36

Test Mode : Capture mode Tested by: KANG M G

Date: 2019-04-22 80 Level (dBuV/m)

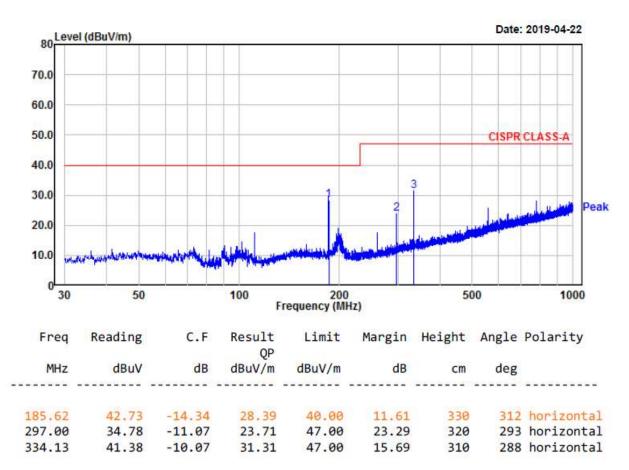
Freq	Reading	C.F	Result	Limit	Margin	Height	Angle	Polarity
MHz	dBuV	dB	QP dBuV/m	dBuV/m	dB	cm	deg	
101.87	48.39	-17.20	31.19	40.00	8.81	146	304	vertical
111.37	49.17	-15.80	33.37	49.00	6.63	150	107	vertical
185.63	44.23	-14.34	29.89	40.00	10.11	100	325	vertical

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emission (Below 1 GHz)

4, Songjuro 236Beon-gil, yanggi-myeon,

Yongin-si, Gyeonggi-do, Korea

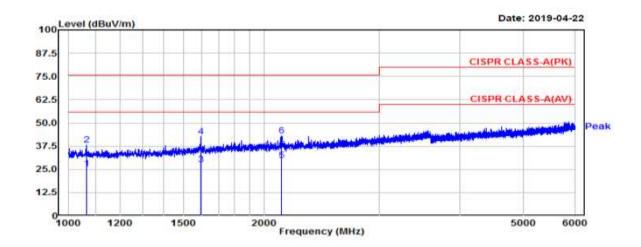

Tel: +82-31-3236008,9 Fax: +82-31-3236010

www.ltalab.com

EUT/Model No.: DC-C4212RX Temp/Humi: 23 / 36

Test Mode : Capture mode Tested by: KANG M G

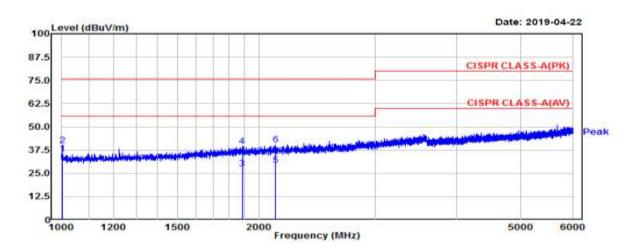
Test Mode : Capture mode Tested by: KANG M G


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emission (Above 1 GHz)

(Above 1 GHz) / V

EUT/Model No.: DC-C4212RX Temp/Humi: 23 / 36


Test Mode : Capture mode Tested by: KANG M G

(Above 1 GHz) / H

EUT/Model No.: DC-C4212RX Temp/Humi: 23 / 36

Test Mode : Capture mode Tested by: KANG M G

TEST mode: Capture mode

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∨	dBu∨	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	cm	deg	Hor/Ver
1001.9	50.2	45.7	-7.5	42.70	38.22	76.0	56.0	33, 30	17.78	100	144	Н
1883.1	43.3	31.4	-1	42.28	30.41	76.0	56.0	33.72	25.59	100	357	Н
2115.6	41.7	30.6	1.55	43.25	32.13	76.0	56.0	32.75	23.87	100	96	Н
1065.0	47.8	34.9	-6.95	40.83	27.96	76.0	56.0	35.17	28.04	100	340	V
1595.6	48.4	33.5	-3.1	45.25	30.40	76.0	56.0	30.75	25.60	100	220	V
2124.4	45.0	31.5	0.85	45.80	32,36	76.0	56.0	30, 20	23.64	100	2	V

3.3 IMMUNITY

3.3.1 Electrostatic Discharge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of an electrostatic discharge.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2019.04.26.

Test method : EN 61000-4-2:2009

Temperature / Humidity / Pressure : 22 $^{\circ}$ C / 41 $^{\circ}$ R.H. / 100 kPa Discharge Impedance : $(330\pm10\%)\Omega$ / $(150\pm10\%)$ pF

Type of Discharge (air discharge) : $\pm 2kV$, $\pm 4 kV$, $\pm 8 kV$

Type of Discharge (contact discharge) : $\pm 6 \text{ kV}$

Number of discharges at each point : 10 of each polarity

Discharge Repetition on Rate : 1 / sec

Test mode : Capture mode Result : Complies

Measurement Data:

1-1. Indirect Discharge

No.	Position	Kind of Discharge	Results	Remarks
1	НСР	Contact	Complies	No reaction recognized
2	VCP	Contact	Complies	No reaction recognized

1-2. Direct Discharge

No.	Position	Kind of Discharge	Result	Remarks
1	Enclosure	Air	Complies	No reaction recognized
2	Lens	Air	Complies	No reaction recognized

ESD TEST POINT

3.3.2 RF Electromagnetic Field

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2019.04.27.

Test method : EN 61000-4-3:2006/A1:2008/A2:2010

Temperature / Humidity / Pressure : $22 \, ^{\circ}\text{C} \, / \, 38 \, \% \, \text{R.H.} \, / \, 101 \, \text{kPa}$

Frequency range : 80 MHz to 2,700 MHz

Test level : 10 V/m (measured unmodulated)

Amplitude Modulation : AM, 80 %, 1 kHz Sinusoidal

PM, 1 Hz (0.5s ON: 0.5s OFF)

Step size : 1 % of fundamental

Dwell Time : 3 s

Test mode : Capture mode

Result : Complies

Measurement Data:

Port	Side	Result	Remarks
	Front	Complies	No reaction recognized
Havinantal	Left	Complies	No reaction recognized
Horizontal	Rear	Complies	No reaction recognized
	Right	Complies	No reaction recognized
	Front	Complies	No reaction recognized
Vantinal	Left	Complies	No reaction recognized
Vertical	Rear	Complies	No reaction recognized
	Right	Complies	No reaction recognized

3.3.3 Electrical fast transients

Definition:

The test assesses the ability of the EUT to operate as intended in the event of fast transients presence on one of the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2019.04.26.

Test method : EN 61000-4-4:2012

Temperature / Humidity / Pressure : 22 $^{\circ}$ C / 42 $^{\circ}$ R.H. / 100 kPa

Cable length : > 3 m

Test level : 2.0 kV (AC power input port)

1.0 kV (Signal port)

Polarity : Negative/ positive

Repetition frequency : 100 kHz

Test mode : Capture mode
Result : Complies

Measurement Data:

Signal Line	Test level	Result	Remarks
LAN	± 1 kV	Complies	No reaction recognized

3.3.4 Conducted disturbances, induced by radio-frequency fields

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic disturbance on the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test date : 2019.04.26.

Test method : EN 61000-4-6:2014/AC:2015 Temperature / Humidity / Pressure : 21 $^{\circ}$ C / 40 $^{\circ}$ R.H. / 100 kPa

Frequency range : 0.15 MHz - 100 MHz

Test level : 10 Vrms unmodulated

Amplitude Modulation : AM, 80 %, 1 kHz Sinusoidal

PM, 1 Hz (0.5s ON: 0.5s OFF)

Step size : 1 % of fundamental.

Test mode : Capture mode

Result : Complies

Measurement Data:

Power Port	Test level (Vrms)	Result	Remarks
LAN	10	Complies	No reaction recognized

APPENDIX A

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment are identified by the Test Laboratory.

Conducted emissions

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESR	Rohde & Schwarz	101499	2019.07.11	1 year
\boxtimes	Pulse Limiter	ESH3-Z2	Rohde & Schwarz	100710	2020.03.16	1 year
\boxtimes	ISN	ISN T800	TESEQ	27109	2019.09.12	1 year
	ISN	ENY81-CA6	Rohde & Schwarz	101565	2019.09.12	1 year
	CURRENT PROBE	EZ-17	Rohde & Schwarz	100508	2019.09.06	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	100378	2019.09.07	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	101468	2019.09.07	-
\boxtimes	LISN(main)	ENV216	Rohde & Schwarz	100408	2019.10.10	1 year
\boxtimes	LISN(sub)	LT32C/10	AFJ	32031518210	2019.09.06	1 year
\boxtimes	TEST PROGRAM	e3_ce 20181212a (V9)	AUDIX	-	-	1 year

Radiated Emission - Below 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2019.09.06	1 year
\boxtimes	Amplifier (25 dB)	8447D	HP	2944A07684	2019.09.06	1 year
\boxtimes	BILOG Antenna	VULB9168	SCHWARZBECK	775	2020.03.16 (KOLAS)	2 year
\boxtimes	TEST PROGRAM	e3 20181212a (V9)	AUDIX	-	-	-

Radiated Emission - Above 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2019.09.06	1 year
	Amplifier	8449B	HP	3008A00671	2019.09.06	1 year
\boxtimes	HORN ANTENNA	3115	ETS	114105	2019.11.03 (KOLAS)	2 year
\boxtimes	TEST PROGRAM	e3 20181212a (V9)	AUDIX	-	-	-

Electrostatic Discharge

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	ESD Simulator	ESS-2000	NOISEKEN	8000C03241	2019.09.11	1 year
	ESD GUN	TC-815R	NOISEKEN	ESS0564361	2019.09.11	1 year

RF Electromagnetic Field

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Signal Generator	E4432B	Agilent	MY41310632	2020.03.16	1 year
\boxtimes	Power Meter	E4419B	Agilent	GB38410133	2020.03.16	1 year
\boxtimes	Power Sensor	E9300A	Agilent	MY41497992	2020.03.16	1 year
\boxtimes	Power Sensor	E9300A	Agilent	MY41497618	2020.03.16	1 year
\boxtimes	RF POWER AMPLIFIER	ITA0300KL-300	INFINITECH	0300KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA2000KL-120	INFINITECH	200KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA4500KL-70	INFINITECH	4500KL 1507 001	-	-
\boxtimes	RF POWER AMPLIFIER	ITA0750KL-300	INFINITECH	0750KL 1507 001	-	-
\boxtimes	LogPer.Antenna (80 MHz ~ 3 GHz)	K9128	RAPA	NONE	-	-

Electrical fast transients

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Compact Generator	Compact NX	EMTEST	P1725200196	2019.09.06	1 year
\boxtimes	AC Power Source	Variac NX	EMTEST	P1745207276	2019.09.06	1 year
	Capacitive Coupling Clamp	CCI	EMTEST	P1744207071	2019.09.06	1 year

Conducted disturbances, induced by radio-frequency fields

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	Signal generator	SML03	R&S	103026/0013	2020.03.16	1 year
\boxtimes	POWER METER	NRVD	R&S	101689	2020.03.16	1 year
\boxtimes	POWER Sensor	URV5-Z2	R&S	100755	2020.03.16	1 year
\boxtimes	POWER Sensor	URV5-Z2	R&S	100756	2020.03.16	1 year
\boxtimes	RF Power Amplifier	FLL75A	FRANKONIA	1033	-	-
\boxtimes	EM INJECTION CLAMP	TSIC-23	F.C.C	529	2020.03.25	1 year
	CDN (M1)	TSCDN-M1-16A	F.C.C	07004	2020.03.16	1 year
	CDN (M2)	TSCDN-M2-16A	F.C.C	07008	2019.09.06	1 year
	CDN (M2)	TSCDN-M2-16A	F.C.C	07009	2020.03.16	1 year
\boxtimes	CDN (M3) (main)	TSCDN-M3-16A	F.C.C	07016	2020.03.16	1 year
\boxtimes	CDN (M3) (sub)	TSCDN-M3-16A	F.C.C	07017	2019.09.06	1 year

APPENDIX B

PERFORMANCE CRITERIA

Performance criteria

The variety and the diversity of the apparatus within the scope of this document makes it difficult to define precise criteria for the evaluation of the immunity test results.

If as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe then the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance by the manufacture and noted in the test report, based on the following criteria:

Electrostatic discharge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Radiated electromagnetic fields

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at a field strength of 3 V/m.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m, providing.

- (a) there is no permanent damage or change to the EUT
- (e.g. no corruption of memory or changes to programmable setting etc.)
- (b) at 3 V/m, any deterioration of the picture is so minor that the system could still be used; and
- (c) there is no observable deterioration of the picture at 1 V/m.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Fast transient burst / slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the bursts is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the surges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Conducted RF immunity

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U0 = 130 \, \text{dB}\mu\text{V}$.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at U0 = 140 dB μ V, providing

- (a) there is no permanent damage or change to the EUT
 - (e.g. no corruption of memory or changes to programmable settings, etc.)
- (b) at $U0 = 130 \text{ dB}\mu\text{V}$, any deterioration of the picture is so minor that the system could still be used, and
- (c) there is no observable deterioration of the picture at U0 = 120 dB μN .

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Voltage dip/interruption

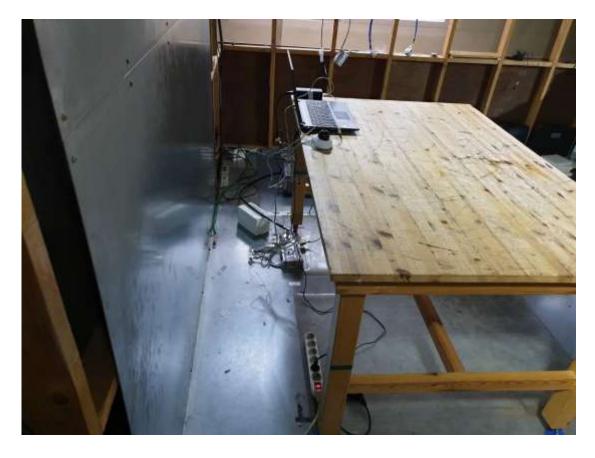
There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

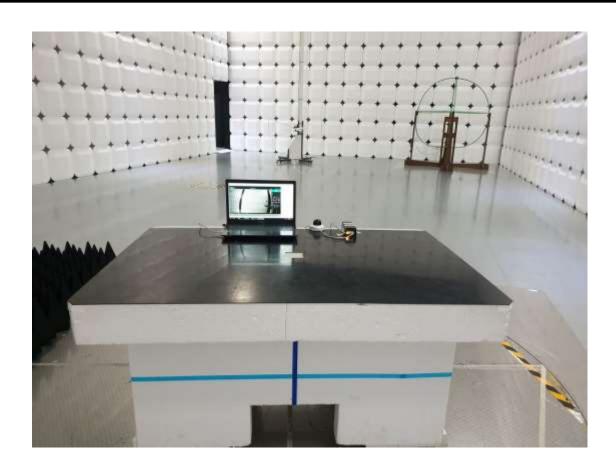
It is permitted to use ancillary equipment (e.g. A UPS) to meet the requirements of this clause. This shall be detailed in the test report and the manufacturer's installation manual.

Signaling a mains fault during the 100 % voltage reduction test is permitted.

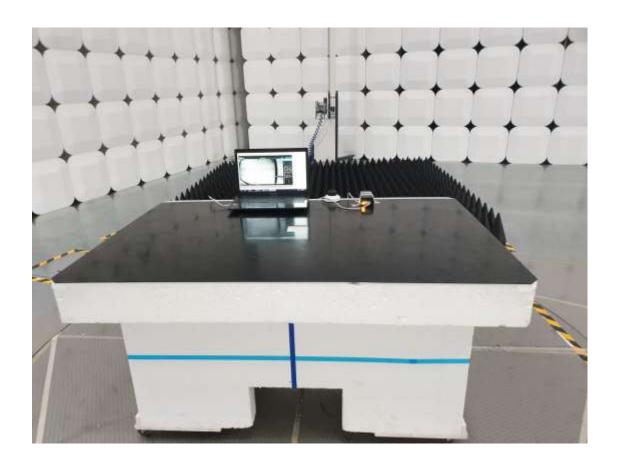
Mains supply voltage variations

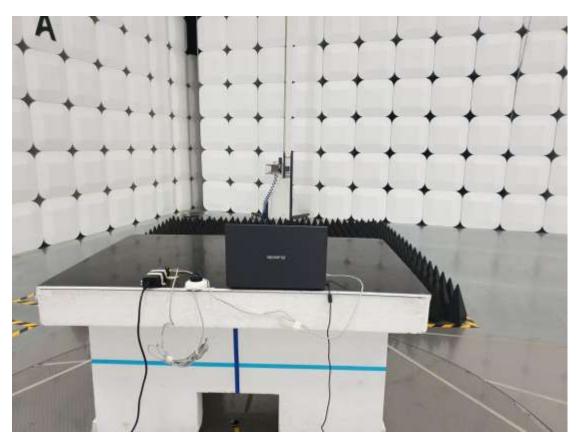

There shall be no damage, malfunction or change of status due to the different supply voltage conditions. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), during the conditioning.

APPENDIX C

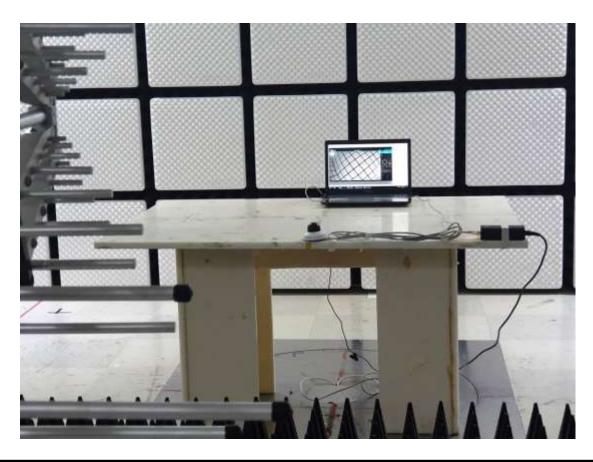

PHOTOGRAPHS


Conducted emission (Maximum emission configuration) / TEL





Radiated emission (Maximum emission configuration)-Below 1 GHz



Electrostatic discharge

RF Electromagnetic Field

Electrical fast transients

Conducted Disturbances, Induced by Radio-Frequency Fields

EUT

EUT

